Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The physical mechanisms responsible for bar formation and destruction in galaxies remain a subject of debate. While we have gained valuable insight into how bars form and evolve from isolated idealized simulations, in the cosmological domain, galactic bars evolve in complex environments, with mergers and gas accretion events occurring in the presence of the turbulent interstellar medium with multiple star formation episodes, in addition to coupling with their host galaxies’ dark matter halos. We investigate the bar formation in 13 Milky Way–mass galaxies from the Feedback in Realistic Environments (FIRE-2) cosmological zoom-in simulations. 8 of the 13 simulated galaxies form bars at some point during their history: three from tidal interactions and five from internal evolution of the disk. The bars in FIRE-2 are generally shorter than the corotation radius (mean bar radius ∼1.53 kpc), have a wide range of pattern speeds (36–97 km s−1kpc−1), and live for a wide range of dynamical times (2–160 bar rotations). We find that the bar formation in FIRE-2 galaxies is influenced by satellite interactions and the stellar-to-dark-matter mass ratio in the inner galaxy, but neither is a sufficient condition for bar formation. Bar formation is more likely to occur, with the bars formed being stronger and longer-lived, if the disks are kinematically cold; galaxies with high central gas fractions and/or vigorous star formation, on the other hand, tend to form weaker bars. In the case of the FIRE-2 galaxies, these properties combine to produce ellipsoidal bars with strengthsA2/A0∼ 0.1–0.2.more » « lessFree, publicly-accessible full text available December 24, 2025
-
Abstract We present deep optical observations of the stellar halo of NGC 300, an LMC-mass galaxy, acquired with the DEEP subcomponent of the DECam Local Volume Exploration survey using the 4 m Blanco Telescope. Our resolved star analysis reveals a large, low surface brightness stellar stream (MV ∼ −8.5; [Fe/H] = −1.4 ± 0.15) extending more than 40 kpc north from the galaxy’s center. We also find other halo structures, including potentially an additional stream wrap to the south, which may be associated with the main stream. The morphology and derived low metallicities of the streams and shells discovered surrounding NGC 300 are highly suggestive of a past accretion event. Assuming a single progenitor, the accreted system is approximately Fornax-like in luminosity, with an inferred mass ratio to NGC 300 of approximately 1:15. We also present the discovery of a metal-poor globular cluster (GC) (Rproj = 23.3 kpc;MV = −8.99 ± 0.16; [Fe/H] ≈ −1.6 ± 0.6) in the halo of NGC 300, the furthest identified GC associated with NGC 300. The stellar structures around NGC 300 represent the richest features observed in a Magellanic Cloud analog to date, strongly supporting the idea that accretion and subsequent disruption is an important mechanism in the assembly of dwarf galaxy stellar halos.more » « lessFree, publicly-accessible full text available March 26, 2026
-
Context.As the nearest accessible massive early-type galaxy, NGC 5128 presents an exceptional opportunity to measure dark matter halo parameters for a representative elliptical galaxy. Aims.Here we take advantage of rich new observational datasets of large-radius tracers to perform dynamical modeling of NGC 5128 Methods.We used a discrete axisymmetric anisotropic Jeans approach with a total tracer population of nearly 1800 planetary nebulae, globular clusters, and dwarf satellite galaxies extending to a projected distance of ∼250 kpc from the galaxy center to model the dynamics of NGC 5128. Results.We find that a standard Navarro-Frenk-White (NFW) halo provides an excellent fit to nearly all the data, except for a subset of the planetary nebulae that appear to be out of virial equilibrium. The best-fit dark matter halo has a virial mass ofMvir = 4.4−1.4+2.4 × 1012 M⊙, and NGC 5128 appears to sit below the mean stellar mass–halo mass and globular cluster mass–halo mass relations, which both predict a halo virial mass closer toMvir ∼ 1013 M⊙. The inferred NFW virial concentration iscvir = 5.6−1.6+2.4, which is nominally lower thancvir ∼ 9 predicted from publishedcvir–Mvirrelations, but within the ∼30% scatter found in simulations. The best-fit dark matter halo constitutes only ∼10% of the total mass at one effective radius but ∼50% at five effective radii. The derived halo parameters are consistent within the uncertainties for models with differing tracer populations, anisotropies, and inclinations. Conclusions.Our analysis highlights the value of comprehensive dynamical modeling of nearby galaxies and the importance of using multiple tracers to allow cross-checks for model robustness.more » « less
-
Abstract Low-mass galaxy pair fractions are understudied, and it is unclear whether low-mass pair fractions evolve in the same way as more massive systems over cosmic time. In the era of JWST, Roman, and Rubin, selecting galaxy pairs in a self-consistent way will be critical to connect observed pair fractions to cosmological merger rates across all mass scales and redshifts. Utilizing the Illustris TNG100 simulation, we create a sample of physically associated low-mass (108<M*< 5 × 109M⊙) and high-mass (5 × 109<M*< 1011M⊙) pairs betweenz= 0 and 4.2. The low-mass pair fraction increases fromz= 0 to 2.5, while the high-mass pair fraction peaks atz= 0 and is constant or slightly decreasing atz> 1. Atz= 0 the low-mass major (1:4 mass ratio) pair fraction is 4× lower than high-mass pairs, consistent with findings for cosmological merger rates. We show that separation limits that vary with the mass and redshift of the system, such as scaling by the virial radius of the host halo (rsep< 1Rvir), are critical for recovering pair fraction differences between low-mass and high-mass systems. Alternatively, static physical separation limits applied equivalently to all galaxy pairs do not recover the differences between low- and high-mass pair fractions, even up to separations of 300 kpc. Finally, we place isolated mass analogs of Local Group galaxy pairs, i.e., Milky Way (MW)–M31, MW–LMC, LMC–SMC, in a cosmological context, showing that isolated analogs of LMC–SMC-mass pairs and low-separation (<50 kpc) MW–LMC-mass pairs are 2–3× more common atz≳ 2–3.more » « less
-
Abstract In the coming decade, thousands of stellar streams will be observed in the halos of external galaxies. What fundamental discoveries will we make about dark matter from these streams? As a first attempt to look at these questions, we model Magellan/Megacam imaging of the Centaurus A (Cen A) disrupting dwarf companion Dwarf 3 (Dw3) and its associated stellar stream, to find out what can be learned about the Cen A dark matter halo. We develop a novel external galaxy stream-fitting technique and generate model stellar streams that reproduce the stream morphology visible in the imaging. We find that there are many viable stream models that fit the data well, with reasonable parameters, provided that Cen A has a halo mass larger than M 200 > 4.70 × 10 12 M ⊙ . There is a second stream in Cen A’s halo that is also reproduced within the context of this same dynamical model. However, stream morphology in the imaging alone does not uniquely determine the mass or mass distribution for the Cen A halo. In particular, the stream models with high likelihood show covariances between the inferred Cen A mass distribution, the inferred Dw3 progenitor mass, the Dw3 velocity, and the Dw3 line-of-sight position. We show that these degeneracies can be broken with radial-velocity measurements along the stream, and that a single radial velocity measurement puts a substantial lower limit on the halo mass. These results suggest that targeted radial-velocity measurements will be critical if we want to learn about dark matter from extragalactic stellar streams.more » « less
-
ABSTRACT We present a novel method for constraining the length of the Galactic bar using 6D phase-space information to directly integrate orbits. We define a pseudo-length for the Galactic bar, named RFreq, based on the maximal extent of trapped bar orbits. We find the RFreq measured from orbits is consistent with the RFreq of the assumed potential only when the length of the bar and pattern speed of said potential is similar to the model from which the initial phase-space coordinates of the orbits are derived. Therefore, one can measure the model’s or the Milky Way’s bar length from 6D phase-space coordinates by determining which assumed potential leads to a self-consistent measured RFreq. When we apply this method to ≈210 000 stars in APOGEE DR17 and Gaia eDR3 data, we find a consistent result only for potential models with a dynamical bar length of ≈3.5 kpc. We find the Milky Way’s trapped bar orbits extend out to only ≈3.5 kpc, but there is also an overdensity of stars at the end of the bar out to 4.8 kpc which could be related to an attached spiral arm. We also find that the measured orbital structure of the bar is strongly dependent on the properties of the assumed potential.more » « less
-
Abstract Stellar streams from globular clusters (GCs) offer constraints on the nature of dark matter and have been used to explore the dark matter halo structure and substructure of our Galaxy. Detection of GC streams in other galaxies would broaden this endeavor to a cosmological context, yet no such streams have been detected to date. To enable such exploration, we develop the Hough Stream Spotter ( HSS ), and apply it to the Pan-Andromeda Archaeological Survey (PAndAS) photometric data of resolved stars in M31's stellar halo. We first demonstrate that our code can re-discover known dwarf streams in M31. We then use the HSS to blindly identify 27 linear GC stream-like structures in the PAndAS data. For each HSS GC stream candidate, we investigate the morphologies of the streams and the colors and magnitudes of all stars in the candidate streams. We find that the five most significant detections show a stronger signal along the red giant branch in color–magnitude diagrams than spurious non-stream detections. Lastly, we demonstrate that the HSS will easily detect globular cluster streams in future Nancy Grace Roman Space Telescope data of nearby galaxies. This has the potential to open up a new discovery space for GC stream studies, GC stream gap searches, and for GC stream-based constraints on the nature of dark matter.more » « less
-
Abstract We present new radial velocity measurements from the Magellan and the Anglo-Australian Telescopes for 175 previously known and 121 newly confirmed globular clusters (GCs) around NGC 5128, the nearest accessible massive early-type galaxy atD= 3.8 Mpc. Remarkably, 28 of these newly confirmed GCs are at projected radii (≳54 kpc), extending to ∼130 kpc, in the outer halo where few GCs had been confirmed in previous work. We identify several subsets of GCs that spatially trace halo substructures that are visible in red giant branch star maps of the galaxy. In some cases, these subsets of GCs are kinematically cold, and may be directly associated with and originate from these specific stellar substructures. From a combined kinematic sample of 645 GCs, we see evidence for coherent rotation at all radii, with a higher rotation amplitude for the metal-rich GC subpopulation. Using the tracer mass estimator, we measure a total enclosed mass of 2.5 ± 0.3 × 1012M⊙within ∼120 kpc, an estimate that will be sharpened with forthcoming dynamical modeling. The combined power of stellar mapping and GC kinematics makes NGC 5128 an ongoing keystone for understanding galaxy assembly at mass scales inaccessible in the Local Group.more » « less
-
null (Ed.)ABSTRACT Flattened axisymmetric galactic potentials are known to host minor orbit families surrounding orbits with commensurable frequencies. The behaviour of orbits that belong to these orbit families is fundamentally different than that of typical orbits with non-commensurable frequencies. We investigate the evolution of stellar streams on orbits near the boundaries between orbit families (separatrices) in a flattened axisymmetric potential. We demonstrate that the separatrix divides these streams into two groups of stars that belong to two different orbit families, and that as a result, these streams diffuse more rapidly than streams that evolve elsewhere in the potential. We utilize Hamiltonian perturbation theory to estimate both the time-scale of this effect and the likelihood of a stream evolving close enough to a separatrix to be affected by it. We analyse two prior reports of stream-fanning in simulations with triaxial potentials, and conclude that at least one of them is caused by separatrix divergence. These results lay the foundation for a method of mapping the orbit families of galactic potentials using the morphology of stellar streams. Comparing these predictions with the currently known distribution of streams in the Milky Way presents a new way of constraining the shape of our Galaxy’s potential and distribution of dark matter.more » « less
-
We quantify the frequency of companions of low-redshift (0.013 < z < 0.0252) dwarf galaxies (2 × 108 M⊙ < Mstar < 5 × 109 M⊙) that are isolated from more massive galaxies in SDSS and compare against cosmological expectations using mock observations of the Illustris simulation. Dwarf multiples are defined as two or more dwarfs that have angular separations >55 arcsec, projected separations rp < 150 kpc, and relative line-of-sight velocities ΔVLOS < 150 km s-1. While the mock catalogues predict a factor of two more isolated dwarfs than observed in SDSS, the mean number of observed companions per dwarf is Nc ˜ 0.04, in good agreement with Illustris when accounting for SDSS sensitivity limits. Removing these limits in the mock catalogues predicts Nc ˜ 0.06 for future surveys (LSST, DESI), which will be complete to Mstar = 2 × 108 M⊙. The 3D separations of mock dwarf multiples reveal a contamination fraction of ˜40 per cent in observations from projection effects. Most isolated multiples are pairs; triples are rare and it is cosmologically improbable that bound groups of dwarfs with more than three members exist within the parameter range probed in this study. We find that <1 per cent of LMC-analogues in the field have an SMC-analogue companion. The fraction of dwarf "Major Pairs" (stellar mass ratio >1:4) steadily increases with decreasing Primary stellar mass, whereas the cosmological "Major Merger rate" (per Gyr) has the opposite behaviour. We conclude that cosmological simulations can be reliably used to constrain the fraction of dwarf mergers across cosmic time.more » « less
An official website of the United States government
